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A statistical theory is formulated to describe the number of particles in
an arbitrarily designated volume of 2 dense disperse system as a random
function of time. This theory is a natural extension to concentrated
systems of the Smolukhovskii-Einstein statistic, which they proposed
for the Brownian motion of indistinguishable noninteracting particles,

The local random pulsations in the dispersed phase,
as well as the related phenomena occurring at the
level of individual particles, are of particular interest
in contemporary investigations into the motion and
physicomechanical properties of various disperse
systems. Such a study is even more necessary in the
light of the numerous significant features involved in
the mechanical behavior of disperse systems which
cannot be comprehended without reference to detailed
information regarding their internal structures. Thus,
for example, a valid explanation for the high transport
coefficient in a fluidized bed necessarily calls for the
introduction of the concepts of pulsation and self-dif-
fusion in the particles of the solid phase, It is impos-
gible to analyze the horizontal flow of a suspension
without introducing the concepts of suspension and the
vertical equilibrium distribution of the particles,
these concepts being typically statistical in nature.

It is clear that a listing of such examples can easily
be enlarged. They all lead to the conclusion that the
disperse medium must be treated not only from the
standpoint of a continuum exhibiting particular prop-
erties, but also as a statistical system described by
local fluctuations in random parameters.

It follows from the analogy to a rarified gas or a
system of noninteraction Brownian particles in a con-
tinuous medium that the initial stage of a complete
statistical study of disperse systems of arbitrary con-
centration must involve the derivation of expressions
to describe the probability characteristics of the
system's density (concentration) regardless of the
specific nature of that system,

The solution to the analogous problem for a diluted
system, in which the individual particles may be re-
garded as indistinguishable, noninteracting, and sta-
tistically independent, has been presented in the clas-
sical writings of Smolukhovskii and Einstein [1]; this
solution was subsequently subjected to rigorous veri~
fication through the introduction of a totally additive
measure to the set of elementary events for an indi-
vidual particle, followed by functional integration with
respect to the product of the measures [2]. With tran-
sition from a dilute system to one that is concentrated,
we can again treat the particles as indistinguishable,
but the property of statistical independence for the
behavior of the various particles is lost. For example,
the probability of a new particle penetrating into some
isolated volume is a strong function of the fraction of

the "free® volume, or what is the same, a function of
the number of particles that already exist within the
isolated volume. This circumstance hinders the intro-
duction of measures into the set of elementary events
for a collection of particles, and it makes difficult
the application of integration in functional space [2]; in
this paper we have therefore used the generalization
of the combinatorial Smolukhovskii method [1], which
is clearer from the physical standpoint, but which is
not as rigorous.

Let us calculate the probability Wys(n) of finding
n particles in some volume A, set apart in a rather
large volume V(A <« V) occupied by a disperse system.
Without loss of generality, it is convenient to make
the transition from a continuous method to one that is
discrete for determining the volumes, by measuring
the volumes with the aid of particle numbers N which
can be contained within these volumes under conditions
of dense packing. Thus it is clear that

N, =V ), N=N,=A@Wp,)",
ny, <N, n=n,<N,=N.

This method of description corresponds to the net-
work model of a disperse system; the volume of a
single cell in the network is equal to #/p,, and the
volumes are, in general, divisible by the volume of
the cell. We describe the concentration of the system
by the quantity v = nV/NV, which represents the frac-
tion of the cells occupied by particles, while the sit-
uation within volume A is described by means of the
number v, =n/N = p+ 6yy.

In view of the indistinguishability of the particles
(as well as of the cells), the probability of the first
n particles from the sequence ny of particles intro-
duced into the empty lattice from Ny cells into any
N of the isolated cells, and of all of the remaining
particles entering the "outside" cells whose total
number is given by N, = Ny ~ N is equal to
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It is obvious that the probability of n particles
with arbitrarily fixed numbers (from the previous
sequence of ny particles) entering N cells, and of all
of the remaining particles entering N cells, is also
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described by (1). For the unknown probability we
therefore derive the relationship
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It is easy to see that distribution (2) satisfies the
completeness condition. Indeed,

EW () =€y ) Z vy Cy = 1.

n=0 n=0

The summation is carried out here to the number
N which represents the maximum possible number of
particles in volume A. In studying diluted systems,
we do not encounter the problem of determining the
upper summation limit, because the states that are
close to the densely packed state are extremely un-
likely in diluted systems.

We are primarily interested in the limiting form of
distribution (2) for an unbounded increase in V. We
introduce the quantities
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Using the Stirling formula for the factorials and the
expansion of C*—a function of px—into a series in
powers of &y, %fter simple calculations, for Ny >
>» N we will obtain
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Distribution (3) is similar in form to an analogous
distribution for diluted systems [3], but its parameters
are completely different in meaning. Instead of the
total number of particles ny in the system, (3) includes
only the number of cells N in the isolated volume, and
instead of the quantity p = A/V, tending toward zero
with increasing V, we have the quantity y = nV/NV,

In particular, it is impogsible in (3) to have the pas-
sage to the limit y — 0, whichleads formally (when

N >> 1) to the Poisson distribution for the number n.
On the other hand, for dense dispersed systems, the
quantity v is significantly different from zero and the
application of the Poisson law for the random quantity
n in application to such systems would be a serious
error. Unfortunately, among the works known to us,
this circumstance has not been taken into consideration
in any analysis of the fluctuation phenomena occurring
within fluidized beds, pulps, and similar densely
packed systems (see, for example, [4]).

Assuming p = const, N — *°, and n — =, after simple
calculation analogous to that performed in [3], we
derive the formula
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W(n)~[2n N v(l —v)|=12 exp [_(n__l,]v_)z]

N v(1—v) |

N, n> 1. (4)

Thus the fluctuations in the number of particles are
subject to a Gaussian distribution, given sufficiently
large volumes.

It is easy to find the various moments of distribution
(3). In particular,
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This also yields
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We see that the quantities in (5) that have been
determined from the exact distribution (3) coincide
with the analogous Gaussian moments of distribution
(4). For moments of higher order this contention is
not valid.

Let us now consider the number of particles in
volume A as a random function of time n(t). We intro-
duce the probability S§n)(t) of i particles leaving vol-
ume A within time t and we also introduce the prob-
ability Ej(t) of j particles penetrating into this volume
from without during that same period of time. In the
usual manner, employing the diffusion analogy, for
Sgn) we derive [1,2]

S () = CLP () (1— PO . (6)
Here P(t) is the "aftereffect probability" introduced
by Smolukhovskii in [1], which is expressed in the
following form [2]:

P(t) =1—g (), g“)ZITSSG“’“’ fdedp, (1)
A A

where the integration is extended to the region A;
G(r/p,t) is the Green's function for the diffusion equa-
tion

3
=2 3 ayz ’ (8)

while Vi and Dy are coordinates in the directions of
the principal axes and the eigenvalues of the symmetric
diffusion tensor D... As t — 0 we have P(t) — 0, and

as t — =, the quan%lty P{t) — 1.
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Let us note that the coefficients Dy; are functions,
generally speaking, of the concentration of the dis-
perse system and, in particular, of the number of
particles in volume A during the diffusion time. How-
ever, distribution (4) makes it possible to evaluate
D;; in approximate terms from the values which corre-
spond to the concentration p .

Assuming statistical equilibrium between the par-
ticles in the isolated volume and in the ambient me-
dium, we have Ej = (an)), where the averaging is
carried out over the nimber of particles n = n(0) in
the volume A(n = j). Using (3) and (6), we obtain
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Distributions (6) and (9) represent the expansions
of the binomials [P + (1 — P)]? and [vP + (1 — yP)IN,
respectively, and they obviously satisfy the complete~
ness condition.

The Smolukhovskii formula for E;(t) is derived
from (9) for small t, when it is possible to assume
vP =~ 0 and when it is possible to have the passage to
the limit yP — 0, N — « and j = const to the Poisson
distribution. In this case, the probability of a large
number of particles penetrating into volume A is ex-
ceedingly small, and the existence of an upper sum-
mation bound in (9) is inconsequential.

Formally, the probability Ej(t) can be treated as
the probability of certain "quasi-particles® leaving
{or entering) the "average" volume j during the time
t, given that at the instant t = 0 there were N quasi-
particles within the volume; the probability of one
quasi-particle leaving the volume during time t is
equal to yP(t). The introduction of such quasi-particles
corresponds to a uniform distribution of particles
through the cells, much like the diffusion energy cor-
responds to the uniform "smearing" of the substance
in volume A.

Ast— 0, we have Ey =~ 1, Ej — 0 (j > 0); with an
increase in t, the quantity E, diminishes monotonically
to zero, Ey increases monotonically to unity, and all
the other E; pass through a maximum when t = t;, with
t; denoting a monotonically increasing sequence. The
physical significance of this behavior in the functions
Ej(t) is self-evident.

Having represented the event which involves the
change in n(t) from n when t = 0 to n + k in the form
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of a sum of mutually exclusive elementary events
involving the leaving of i particles from volume A
and the penetration of i + k particles into that volume
during the time t [1], for the probability of a change
in the number of particles in A by a quantity k we
obtain the following:

I
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We can calculate the average of the various func-
tions of the number k directly with the aid of distribu-
tion (10), as is done in [1], or we can use distributions
(6) and (9). For example, we will have

(bYW = (ji ) W=y @— (i) @ = PN —n),
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These formulas are derived exactly as the expres-
sions for (n) and {(n?) above. Having also averaged
these in accordance with distribution (3), we have

(kY =0, (B> =2NvP(l—vP). (11)

It is interesting that (k®) exhibits a maximum at
t =ty , Where ty, is the solution of the equation P(t) =
= (2p)~!, while as t — 0 and t — <, the quantity (k2
tends, respectively, to zero and the constant Ny(1 — v).
We are also interested in the Euler time correlation
of the function n(t). For this we have the formula

R)= (nO)n{t)) = (nin+k) )=
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Using the conventional method [3], we obtain an
identical zero for the Euler spatial correlation between
the particle numbers in two nonoverlapping [noninter-
secting] volumes, if we will only neglect the local
phenomena whose spatial dimensions are on the order
of the linear dimensions of the particles.

The results of this work enable us to express any
parameters which characterize the change in the num-
ber of particles in an arbitrary volume of a disperse
system as a function of the component Dj; of the dif-
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fusion tensor and of the concentration v. In studying
the fluctuations in volumes of arbitrary shape, we

find that the basic difficulty is caused by the calculation
of the aftereffect probability P(t) from (7) and (8). How-~
ever, for volumes of symmetric shape, the determina-
tion of P(t) presents no difficulty. For example, for a
flat layer of thickness h, perpendicular to the prin-
cipal axis of the tensor Dij—which corresponds to the
eigenvalue of D—we have [1]

h
P(t) = erfc ( 2Vﬁ> +

Dt n
2h~1l/—[1— <_ )]
+ n oxp 4Dt |

We note that on the basis of the derived relation-
ships we can propose certain variants of experiments
to determine the coefficients of diffusion in disperse
systems. For example, we can trace the change in
the number of tagged particles in some mixed volume
over a period of time, and to use distribution (6) to
calculate the coefficients of diffusion.

Let us also note that formulas (5) for the absolute
and relative fluctuations in n differ from the formulas
derived in [5] on the basis of the analogy between a
bed of solid particles fluidized by a gas and the gas
whose particles exhibited delta-like interaction. This
is associated with the fact that unlike a conventional
gas, representing a two-parameter system, the state
of the fluidized particles is completely determined by
the assumption of a single parameter—for example,
the liquid-phase filtration rate u, while the effective
"temperature” ® of the particles, introduced in [5],
is a function of u and cannot be arbitrarily specified.
The formulas in [5] correspond to situations in which
the quantity ® remains constant when u is varied,
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In principle, this is possible only on introduction of
extremely specific forced perturbations in the small-
scale motion of the solid and liquid phases. On the
other hand, the use of the general method of [5] per-
mits us to express the fluctuations in the phase velocity
and in other parameters as a function of the fluctuation
characteristics for the number n and the averaged
parameters of motion, which naturally represents an
independent problem.

NOTATION

V is the volume of the disperse system; A is the
separated volume; Ny, ny, N, and n are the numbers
of cells and particles in these volumes, respectively;
¢ is the particle volume; p, is the volume concentra-
tion of densely packed system; p is the fraction of cells
occupied with particles; P(t) is the aftereffect prob-
ability; Djj and Dy are the components of the diffusion
tensor and its eigenvalues.
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