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A statistical theory is formulated to describe the number of particles in 
an arbitrarily designated volume of a dense disperse system as a random 
function of time. This theory is a natural extension to concentrated 
systems of the Smolnkhovskii-Einstein statistic, which they proposed 
for the Brownian motion of indistinguishable noninteracting particles. 

The local random pulsat ions  in the d i spe r sed  phase,  
as well as the re la ted  phenomena occur r ing  at the 
leveI of individual par t i c les ,  are  of pa r t i cu l a r  in te res t  
in con tempora ry  invest igat ions  into the mot ion and 
phys ieomechanica l  p roper t i es  of var ious  d i sperse  
sys tems .  Such a study is even more  nece s sa ry  in the 
light of the numerous  signif icant  fea tures  involved in 
the mechanica l  behavior  of d i spe r se  sys tems  which 
cannot be comprehended without r e fe rence  to detai led 
informat ion  rega rd ing  their  in terna l  s t ruc tu re s .  Thus,  
for example,  a valid explanation for the high t r anspo r t  
coefficient in a f luidized bed n e c e s s a r i l y  cal ls  for the 
in t roduct ion of the concepts of pulsa t ion and se l f -d i f -  
fusion in the pa r t i c l e s  of the solid phase.  It is impos-  
sible to analyze the horizontal  flow of a suspens ion  
without in t roducing the concepts of suspens ion  and the 
ver t ica l  equ i l ib r ium dis t r ibut ion  of the pa r t i c l es ,  
these concepts being typical ly  s ta t i s t i ca l  in nature .  
It is c lear  that a l i s t ing  of such examples  can eas i ly  
be enlarged.  They all lead to the conclusion that the 
d i spe r se  medium mus t  be t rea ted  not only f rom the 
standpoint  of a cont inuum exhibit ing pa r t i cu l a r  prop-  
e r t i e s ,  but also as a s ta t i s t ica l  sys tem descr ibed  by 
local  f luctuat ions in random p a r a m e t e r s .  

It follows from the analogy to a r a t i f i ed  gas or a 
sys tem of non in te rae t ion  Brownian pa r t i c l e s  in a con- 
t inuous medium that the ini t ia l  stage of a complete 
s ta t i s t ica l  study of d i spe r se  sys tems  of a r b i t r a r y  con- 
een t ra t ion  mus t  involve the der iva t ion  of express ions  
to desc r ibe  the probabi l i ty  cha rac t e r i s t i c s  of the 
s y s t e m ' s  densi ty  (concentrat ion) r ega rd l e s s  of the 
specific na ture  of that sys tem.  

The solution to the analogous problem for a diluted 
sys tem,  in which the individual par t i c les  may be r e -  
garded as indis t inguishable ,  nonin terac t ing ,  and s ta -  
t i s t i ca l ly  independent,  has been presen ted  in the e las -  
s ieal  wri t ings  of Smolukhovskii  and Eins te in  [1]; this 
solution was subsequent ly  subjected to r igorous  ve r i -  
f icat ion through the in t roduct ion of a totMly additive 
m e a s u r e  to the set of e l emen ta ry  events for an indi-  
vidual par t i c le ,  followed by funetional  in tegra t ion  with 
respect  to the product of the m e a s u r e s  [2]. With t r a n -  
s i t ion f rom a dilute sys tem to one that is concentra ted,  
we can again t rea t  the par t i c les  as indis t inguishable ,  
but the proper ty  of s ta t i s t i ca l  independence for the 
behavior  of the var ious  pa r t i c l e s  is lost .  For  example,  
the probabi l i ty  of a new par t i c l e  pene t ra t ing  into some 
isolated volume is a s t rong function of the f rac t ion  of 

the Nfree~ volume,  or what is the same,  a function of 
the number  of par t i c les  that a l ready exist  within the 
isolated volume. This c i r cums tance  hinders  the in t ro-  
duction of m e a s u r e s  into the set of e l ementa ry  events 
for a col lect ion of pa r t i c l es ,  and it makes  difficult  
the application of in tegrat ion in functional  space [2]; in 
this paper we have therefore  used the genera l iza t ion  
of the combinator ia l  Smolukhovskii  method [1], which 
is c l e a r e r  f rom the physical  standpoint,  but which is 
not as r igorous .  

Let us calculate  the probabi l i ty  Wv(n ) of f inding 
n pa r t i c l e s  in some volume A, set apart  in a ra the r  
large volume V(A << V) occupied by a d i spe r se  sys tem.  
Without loss  of general i ty ,  it is convenient  to make 
the t rans i t ion  from a continuous method to one that is 
d i sc re te  for de te rmin ing  the volumes,  by measu r ing  
the volumes with the aid of par t ic le  numbers  N which 
can be contained within these volumes under  condit ions 
of dense packing. Thus it is c lear  that 

N v = Y(ff/p.) -1, N = N A = A(~/p.) -1, 

n y l O N  v, n = n A . % : N A = N .  

This method of descr ip t ion  cor responds  to the net -  
work model of a d i sperse  sys tem;  the volume of a 
single cell in the network is equal to O/p, ,  and the 
volumes are ,  in general ,  divis ible  by the volume of 
the cell .  We desc r ibe  the concent ra t ion  of the sys tem 
by the quantity v = n v / N  V, which r ep re sen t s  the f rac -  
tion of the cel ls  occupied by pa r t i c l es ,  while the s i t -  
uation within volume A is described by means of the 

number v A =n/N= ~+ 6v A. 
In view of the indistinguishability of the particles 

(as well as of the cells), the probability of the first 

n particles from the sequence n V of particles intro- 

duced into the empty lattice from N V cells into any 

N of the isolated cells, and of all of the remaining 
par t ic les  enter ing  the noutside" cel ls  whose total 
number  is given by N, = N V - N is equal to 

N N--1  
N V N V -  1 "" 

N - - ( n - -  l) N. N.--1  
" "  N y _ ( n _  l) N v - - n  N v - - ( n + l )  "" 

N. - - (n ,  - - I )  N! (N v - -nv) !  N . !  

'"  N v - ( % -  1) ( N - - n ) !  Nv! (N ,  - - n . ) !  ' 

n + n.  = n v. (1) 

It is obvious that the probabi l i ty  of n par t ic les  
with a r b i t r a r i l y  fixed numbers  (from the previous 
sequence of n V par t ic les)  en te r ing  N cel ls ,  and of all 
of the r ema in ing  pa r t i c l e s  enter ing  N.  cel ls ,  is also 
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descr ibed  by (1). For  the unknown probabi l i ty  we 
therefore  der ive  the re la t ionship  

N! N,!  (N v - -  nv)! 
W v (n) = C,~ v (N--n)! (N,- -n , ) t  Nvl = 

n v  n 
= (CNv)--1CN~, CN" (2) 

It is easy to see that d i s t r ibu t ion  (2) sa t is f ies  the 
comple teness  condition. Indeed, 

N N 
n nv--n n 

E Wv(n)=(CN;  )-1 E CWv-NCw = 1. 
n=0  n~0  

The summat ion  is ca r r i ed  out here  to the number  
N which r ep re sen t s  the max imum possible  number  of 
pa r t i c l e s  in volume A. In studying diluted sys tems ,  
we do not encounter  the problem of de te rmin ing  the 
upper summat ion  l imi t ,  because  the s ta tes  that are  
close to the densely  packed state are ex t remely  un-  
l ikely in diluted sys tems .  

We are p r i m a r i l y  in te res ted  in the l imi t ing  form of 
d is t r ibut ion  (2) for an unbounded inc rease  in V. We 
introduce the quanti t ies 

n,  n v - -  n 
V . - - N ,  - - N  v - N m v + S v * '  

vN - - n  
5v . - -  Nv , Nv)} N. 

Using the St i r l ing fo rmula  for the fac tor ia l s  and the 
expansion of cn*--a  function of v , - - in to  a s e r i e s  in 
powers of 5v.~*after s imple  calcula t ions ,  for N V >> 
>> N we will obtain 

e r r ,  ~ p n v  ~n  ( ] - - V )  N-t~ , 
N , ~  ~ N  y 

W (n) = lim Wv(n ) -- C~ vn(1--V) N-n. (3) 
V~oo 

Dist r ibut ion  (3) is s i m i l a r  in form to an analogous 
d is t r ibut ion  for diluted sys tems  [3], but its p a r a m e t e r s  
are completely different  in meaning.  Instead of the 
total number  of par t i c les  n V in the sys tem,  (3) includes 
only the number  of cells  N in the isolated volume, and 
instead of the quantity p = A/V, tending toward zero 
with inc reas ing  V, we have the quantity v = n v / N  V. 
In pa r t i cu la r ,  it is imposs ib le  in (3) to have the pas -  
sage to the l imi t  v ~ 0, whichleads  formal ly  (when 
N >> 1) to the Po isson  d is t r ibut ion  for the number  n. 
On the other hand, for dense d i spersed  sys tems ,  the 
quantity v is s ignif icant ly different f rom zero and the 
application of the Po isson  law for the random quantity 
n in applicat ion to such sys tems  would be a ser ious  
e r r o r .  Unfortunately,  among the works known to us, 
this c i r cums tance  has not been taken into cons idera t ion  
in any analys is  of the f luctuation phenomena occur r ing  
within fluidized beds,  pulps,  and s im i l a r  densely 
packed sys tems  (see, for example,  [4]). 

Assuming v = eonst ,  N ~ ~, and n ~ ~, af ter  s imple 
calculat ion analogous to that per formed in [3], we 
der ive  the fo rmula  

( n - ,  N ?  1 ~(n)~ t2~g,(1 --,)rl/~ ~xp 2~/,(1~)]' 

N, n >> 1. (4) 

Thus the f luctuat ions in the number  of par t i c les  are 
subject  to a Gauss ian  dis t r ibut ion,  given sufficiently 
Iarge volumes.  

It is easy to find the var ious  moments  of d i s t r ibu t ion  
(3). In pa r t i cu la r ,  

N 

~ n C "  ~"(I v) N-n <n>=z~ N -- = 

n=O 

d = v - - ( 1 , v  +x)NI~=, = v N, 
dx 

N 
< . 2 >  = p 

n=0 

d~d v d ) x N = ", -U; + l 0 - , ,+ ' )J~=~ -- 

= vN(vN-5  1 --v). 

This also yields 

<6n> = < n - - v N > = 0 ,  <(6n) z> = v ( 1 - - v ) N ,  

<n> -2 <(6n) 2 > = ( 1 - v ) < n >  -1 (5) 

We see that the quanti t ies in (5) that have been 
de te rmined  from the exact d is t r ibut ion  (3) coincide 
with the analogous Gauss ian  moments  of d is t r ibut ion  
(4). For  moments  of higher order  this contention is 
not valid.  

Let us now consider  the number  of par t ic les  in 
volume A as a random function of t ime n(t). We in t ro-  
duce the probabi l i ty  s!n)(t) of i pa r t i c les  leaving ro l -  L 
ume A within t ime t and we also introduce the prob-  
abil i ty Ej(t) of j pa r t i c l e s  penet ra t ing  into this volume 
f rom without during that same period of t ime.  In the 
usual  ma nne r ,  employing the diffusion analogy, for 
S! n) we der ive  [1,2] 

1 

S~ n) (t) = Cin P' (t) (1-- P (t) ) n-i . (6) 

Here P(t) is the "aftereffect  probabi l i ty"  introduced 
by Smolukhovskii  in [1], which is expressed  in the 
following form [2]: 

P(t)=l--g(t), g( t )= l ~ - ~ G ( r l f , ,  t)drdN (7) 
AJj 

AA 

where the in tegra t ion  is extended to the region A; 
G(r /p ,  t) is the Green ' s  function for the diffusion equa- 
tion 

3 3 

2 2 02 0 2 (p = D k 
O q ) _  Dii Ox~Oxi @ 2 ,  (8) 
Ot i,]=l k = l  

while Yk and D k are coordinates  in the d i rec t ions  of 
the pr incipal  axes and the eigenvalues of the symmet r i c  
diffusion tensor  Di"n As t ~ 0 we have P(t) ~ 0, and 
as t ~ ,o, the quantity P(t) ~ 1. 
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Let us note that the coefficients Dij are  functions,  
genera l ly  speaking, of the concent ra t ion  of the d i s -  
pe r se  sys tem and, in pa r t i cu l a r ,  of the number  of 
par t ic les  in volume A dur ing the diffusion t ime.  How- 
ever ,  d i s t r ibu t ion  (4) makes it poss ib le  to evaluate 
Dij in approximate t e r m s  f rom the values  which c o r r e -  
spond to the concent ra t ion  v .  

Assuming  s ta t i s t ica l  equ i l ib r ium between the p a r -  
t ic les  in the isola ted volume and in the ambient  me -  
dium, we have E~ = (S! n)) ,  where the averaging is 

J J 
ca r r i ed  out over the number  of pa r t i c l e s  n = n(0) in 
the volume A(n >- j). Using (3) and (6), we obtain 

N 
~'~ C ~ C~,~(l__v)N-~ pi (l__p)n-] = E i (t) = A~ x 
n=] 

N 

n=l 

= (1 - -  v) ~ - i  (~ p)i x 

N--] 

]! ~ . a [ m ! ( N - - m - - ] ) ! ] - a [  1--~ ] X 

m--O 

= C~ (v P)] (1 - - v  p)N--i. (9) 

Dis t r ibut ions  (6) and (9) r ep r e sen t  the expansions 
of the b inomia ls  [P + (1 - p)]n and [vP + (1 - vP)] N, 
respect ive ly ,  and they obviously sat isfy the complete-  
ness  condition. 

The Smolukhovskii  fo rmula  for Ej(t) is der ived 
f rom (9) for smal l  t, when it is poss ib le  to assume 
vP ~ 0 and when it is possible  to have the passage to 
the l imi t  v P ~  0, N ~  ~ a n d j  = cotist to the Po isson  
dis t r ibut ion.  In this case,  the probabi l i ty  of a large 
number  of pa r t i c l e s  pene t ra t ing  into volume A is ex- 
ceedingly smal l ,  and the exis tence of an upper sum-  
mat ion bound in (9) is inconsequent ia l .  

Fo rma l ly ,  the probabi l i ty  Ej(t) can be t rea ted  as 
the probabi l i ty  of ce r t a in  "quas i -pa r t i c l e s"  leaving 
(or enter ing)  the "average" volume j during the t ime 
t, given that at the instant  t = 0 there  were N quasi -  
pa r t i c l e s  within the volume; the probabi l i ty  of one 
quas i -pa r t i c l e  leaving the volume dur ing t ime t is 
equal to vP(t). The introduct ion of such quas i -pa r t i c l e s  
cor responds  to a uniform dis t r ibut ion  of pa r t i c l e s  
through the ce l l s ,  much like the diffusion energy cor -  
responds to the uniform "smear ing"  of the substance 
in volume A. 

As t ~  0, we have E 0 ~ 1, Ej ~ 0 (j > 0); with an 
inc rease  in t, the quantity E 0 d imin ishes  monotonical ly  
to zero,  E N inc reases  monotonical ly  to unity, and all 
the other Ej pass  through a max imum when t = tj, with 
tj denoting a monotonical ly  i nc reas ing  sequence.  The 
physical  s ignif icance of this behavior  in the funct ions 
Ej(t) is se l f -evident .  

Having r ep resen ted  the event which involves the 
change in n(t) f rom n when t = 0 to n + k in the form 

of a sum of mutual ly exclusive e lementa ry  events 
involving the leaving of i pa r t i c les  f rom volume A 
and the penet ra t ion 'of  i + k par t ic les  into that volume 
dur ing the t ime t [1], for the probabi l i ty  of a change 
in the number  of par t i c les  in A by a quantity k we 
obtain the following: 

ut ~ i§  
i=O 

~__.d t~i (l p)n- - i  (V p)i+k (1 - - "  p)N--i--k,  p[@k l) i 

i~O 

n 

i=k 

~_~ i i - k i  = ChC N P (1-- P ) " - i ( v P ) i - ~ ( l ~ v  p)~V-i+~. (10) 

We can calculate  the average of the var ious func-  
tions of the number  k d i rec t ly  with the aid of d i s t r ibu-  
tion (10), as is done in [1], or  we can use d is t r ibut ions  
(6) and (9). For  example,  we will have 

(k  } (n) = ( ] _ i  } (~)= ( ] } (~)-- ( i } (~) = P ( v N - - n ) ,  

= p2 (v N - -  n) ~" - -  p2 (v2 N + n) + P (v N + n). 

These formulas  are der ived exactly as the expres -  
sions for (n) and (n 2) above. Having also averaged 
these in accordance with d is t r ibut ion  (3), we have 

( k )  = 0 ,  ( k  2} = 2 N v P ( I - - v P ) .  (11) 

It is in te res t ing  that (k 2) exhibits a max imum at 
t = t m, where tm is the solution of the equation P(t) = 
= (2v) - t ,  while as t ~ 0 and t ~ o~, the quantity (k 2) 
tends, respect ively ,  to zero and the constant  Nv(1 - v). 

We are  also in te res ted  in the Euler  t ime cor re la t ion  
of the function n(t). For  this we have the formula  

R ( t ) ~  ( n(O)n(t) } = ( n ( n §  } =  

N 

= 2C~,an (1--v)N-n(n~@n ( k } (n))= 

t~O 

= ( l - -P)  ( n  ~- } + P ( n }  z ~  

= (v N)  e + v ( 1 - -  v) ( 1 - -  P) N .  (12 )  

Using the conventional  method [3], we obtain an 
identical  zero for the Euler  spatial  co r re la t ion  between 
the par t ic le  numbers  in two nonoverlapping [nonin ter -  
secting] volumes,  ff we will only neglect the local 
phenomena whose spat ial  d imens ions  are on the order  
of the l inear  d imensions  of the par t ic les .  

The resu l t s  of this work enable us to express  any 
p a r a m e t e r s  which charac te r i ze  the change in the num-  
ber  of pa r t i c l e s  in an a r b i t r a r y  volume of a d i sperse  
sys tem as a function of the component Dij of the dif- 
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fusion t enso r  and of the concen t ra t ion  u. In s tudying 
the f luctuat ions  in vo lumes  of a r b i t r a r y  shape,  we 
find that  the b a s i c  d i f f icul ty  is caused  by the ca lcu la t ion  
of the a f te re f fec t  p r o b a b i l i t y  P(t) f rom (7) and (8). How- 
eve r ,  for  vo lumes  of s y m m e t r i c  shape,  the d e t e r m i n a -  
t ion of P(t) p r e s e n t s  no diff icul ty .  F o r  example ,  for  a 
f la t  l a y e r  of th ickness  h, p e r p e n d i c u l a r  to the p r i n -  
c ipal  axis  of the t enso r  Di j - -which  c o r r e s p o n d s  to the 
e igenvalue  of D--we have [1] 

h 

We note that  on the bas i s  of the de r ived  r e l a t i o n -  
ships  we can p ropose  ce r t a i n  va r i an t s  of e x p e r i m e n t s  
to d e t e r m i n e  the coeff ic ients  of diffusion in d i s p e r s e  
s y s t e m s .  F o r  example ,  we can t r a c e  the change in 
the number  of tagged p a r t i c l e s  in some mixed  volume 
over  a pe r iod  of t ime ,  and to use  d i s t r ibu t ion  (6) to 
ca lcu la te  the coeff ic ients  of diffusion.  

Let  us a lso  note that  f o r m u l a s  (5) for  the absolute  
and r e l a t i ve  f luctuat ions  in n d i f fer  f rom the f o r m u l a s  
de r ived  in [5] on the bas i s  of the analogy between a 
bed of sol id  p a r t i c l e s  f lu id ized by a gas and the gas  
whose p a r t i c l e s  exhibi ted d e l t a - l i k e  in te rac t ion .  This 
is  a s soc i a t ed  with the fact  that  unlike a convent ional  
gas ,  r e p r e s e n t i n g  a t w o - p a r a m e t e r  s y s t e m ,  the s ta te  
of the f lu id ized  p a r t i c l e s  is  comple t e ly  d e t e r m i n e d  by 
the assumpt ion  of a s ingle  p a r a m e t e r - - f o r  example ,  
the l i qu id -phase  f i l t r a t ion  r a t e  u, while  the effect ive  
" t e m p e r a t u r e "  O of the p a r t i c l e s ,  in t roduced in [5], 
is  a function of u and cannot be a r b i t r a r i l y  speci f ied .  
The f o r m u l a s  in [5] co r r e spond  to s i tua t ions  in which 
the quanti ty | r e m a i n s  constant  when u is  var ied .  

In p r inc ip l e ,  this  is  p o s s i b l e  only on in t roduct ion  of 
e x t r e m e l y  spec i f ic  fo rced  pe r tu rba t i ons  in the s m a l l -  
sca le  motion of the so l id  and l iquid phases .  On the 
o ther  hand, the use of the gene ra l  method of [5] p e r -  
m i t s  us to e x p r e s s  the f luctuat ions in the phase  ve loc i ty  
and in other  p a r a m e t e r s  as a function of the f luctuat ion 
c h a r a c t e r i s t i c s  for  the number  n and the ave raged  
p a r a m e t e r s  of motion,  which na tu ra l ly  r e p r e s e n t s  an 
independent p r o b l e m .  

NOTATION 

V is the volume of the d i s p e r s e  sys t em;  A is the 
s e p a r a t e d  volume;  N V, n V, N, and n a r e  the  numbers  
of ce l l s  and p a r t i c l e s  in these  vo lumes ,  r e spec t ive ly ;  

is  the p a r t i c l e  volume;  p .  is  the volume concen t r a -  
t ion of dense ly  packed  sys t em;  v is  the f r ac t ion  of ce l l s  
occupied with p a r t i c l e s ;  P(t) is  the a f t e re f fec t  p r o b -  
abi l i ty;  Dij and D k a r e  the components  of the diffusion 
t enso r  and i ts  e igenva lues .  
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